FeTRAM. An organic ferroelectric material based novel random access memory cell.

نویسندگان

  • Saptarshi Das
  • Joerg Appenzeller
چکیده

Science and technology in the electronics area have always been driven by the development of materials with unique properties and their integration into novel device concepts with the ultimate goal to enable new functionalities in innovative circuit architectures. In particular, a shift in paradigm requires a synergistic approach that combines materials, devices and circuit aspects simultaneously. Here we report the experimental implementation of a novel nonvolatile memory cell that combines silicon nanowires with an organic ferroelectric polymer-PVDF-TrFE-into a new ferroelectric transistor architecture. Our new cell, the ferroelectric transistor random access memory (FeTRAM) exhibits similarities with state-of-the-art ferroelectric random access memories (FeRAMs) in that it utilizes a ferroelectric material to store information in a nonvolatile (NV) fashion but with the added advantage of allowing for nondestructive readout. This nondestructive readout is a result of information being stored in our cell using a ferroelectric transistor instead of a capacitor-the scheme commonly employed in conventional FeRAMs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach

This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...

متن کامل

Start the Presses

A simple nanoimprinting method creates arrays of ferroelectric polymer structures suitable for low-cost, non-volatile memories. With the development of nanoimprinted high-quality ferroelectric nanomesa arrays, it seems that we now have all the necessary ingredients to print inexpensive, disposable organic memory chips. Figure 1. The nanoimprinting method and the two ways it can be used in non-v...

متن کامل

Non-volatile memory technologies: emerging concepts and new materials

The current mainstream, based on the Flash technology, is expected to be the reference technology also for the next few years. Nevertheless Flash has technological and physical constraints that make more difficult their further scaling. In this contest there is the industrial interest for alternative technologies that exploit new materials and concepts to go beyond the Flash technology, to allo...

متن کامل

A Current-Based Reference-Generation Scheme for 1T-1C Ferroelectric Random-Access Memories

A reference generation scheme is proposed for a 1T-1C ferroelectric random-access memory (FeRAM) architecture that balances fatigue evenly between memory cells and reference cells. This is achieved by including a reference cell per row (instead of per column) of the memory array. The proposed scheme converts the bitline voltage to current and compares this current against a reference current us...

متن کامل

The Future of Nonvolatile Memories

Driven by an increasing demand for mobile devices, the market for nonvolatile memories is rapidly growing [1]. Today all nonvolatile memories are based on charge storage and are fabricated by materials available in CMOS processes. These devices have some general shortcomings like slow programming (from microseconds up to milliseconds), limited endurance (typically 10 – 10 write/erase cycles) as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 11 9  شماره 

صفحات  -

تاریخ انتشار 2011